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Background 

• The logarithmic dissociation constant, pKa, strongly influences a chemical’s 
pharmacokinetic and biochemical properties.  

- pKa reflects the ionization state of a chemical, which affects lipophilicity, solubility, 
protein binding, and the ability to cross the plasma membrane and the blood-brain barrier. 

- Thus, pKa affects absorption, distribution, metabolism, excretion, and toxicity 
(ADMET). 

- Chemicals with no charge at a physiological pH will passively cross the plasma 
membrane more easily than charged molecules and are therefore more likely to have 
biological activity than passively diffused charged chemicals. 

• pKa is an important parameter for physiologically based pharmacokinetic (PBPK) modeling, 
in vitro to in vivo extrapolation (IVIVE), and predicting tissue:plasma partition coefficients. 

• Commercial software tools such as ACD/Labs and ChemAxon predict the pKa of individual 
ionization sites independently of chemical class. However, current publicly available pKa 
models are limited to certain chemical classes. 

Study Goals and Procedure 

• Here we provide free, open-source, fast, and reliable options for predicting pKa for 
heterogeneous chemical classes. 

• Modeling steps:  

- pKa values for 7912 chemicals in water were obtained from DataWarrior, a freely 
available software package.  

- Chemical structures were standardized for QSAR modeling (Mansouri et al. 2016). 
- Continuous molecular descriptors, binary fingerprints and fragment counts were 

generated using PaDEL.  
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- Several machine learning approaches were applied: deep neural networks (DNN), support 
vector machine (SVM), and extreme gradient boosting (XGB). 

- Models were 5-fold cross-validated and evaluated against an external test set.  
- The best models for each algorithm were compared to each other and to predictions from 

ACD/Labs and ChemAxon. 

 

QSAR Modeling 

Conceptual Basis 

 

QSARs are based on the congenericity principle, which is the assumption that structurally similar 
compounds will have similar chemical properties.  

QSARs can be fast and accurate but they depend on the quality of the data used. 

General Steps to Develop a QSAR Model 

• Curation of experimental data 
• Standardization of the chemical structures 
• Preparation of training and test sets 
• Calculation of an initial set of descriptors  
• Selection of a machine learning algorithm 
• Variable selection technique 
• Validation of the model’s predictive ability 
• Define the applicability domain 
• Interpretation of the selected descriptors, if possible 

 

pKa Data 

• The pKa data were obtained from DataWarrior (http://www.openmolecules.org/) and 
included experimentally measured aqueous pKa values and associated SMILES strings for 
7912 heterogenous chemicals.  

http://www.openmolecules.org/
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Methods for Measuring pKa Reported in DataWarrior 

 

Acidic and Basic pKa Values Reported in DataWarrior 
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Data Preparation for Modeling 

Structure Standardization 

Full dataset  

7904 total valid structures 

6245 unique QSAR-ready structures 

Acidic dataset 

3610 total valid structures 

3260 unique QSAR-ready structures 

Basic dataset 

4294 total valid structures 

3680 unique QSAR-ready structures 

 

Acidic and Basic Data Sets 

The DataWarrior data set contained a high 
number of duplicates (1659) and amphoteric chemicals (chemicals with both an acidic and basic pKa). 
Data were processed in three different ways: 

• Option 1: all duplicates removed 

• Option 2: low variability duplicates averaged 

• Option 3: all data included (strongest pKa rule) 

QSAR-ready Structures in Each of the Data Options 
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Training and Test Sets 

• For each data option, the structures were split into training (75%) and test (25%) sets. 
• Training/test set splitting was performed semi-randomly to: 

- Keep similar distributions of pKa values 
- Keep similar distribution of acidic and basic pKas for combined datasets 

Molecular Descriptors 

• The QSAR-ready structures were used to calculate molecular descriptors and generate binary 
fingerprints and fragment counts using PaDEL. 

- 1D and 2D continuous descriptors: 1444 descriptors 
- Binary fingerprints and counts: 9121 bits (CDK, Estate, MACCS, PubChem, 

Substructure, Klekota-Roth and 2D atom pairs) 

 

Machine Learning Algorithms 

• All used tools and resulting models are free and open-source. 

Deep Neural Networks (DNN) 

 

• DNN maps features through a series of nonlinear functions that are linked in a combinatorial 
fashion to maximize model accuracy. 

• Tensorflow and Keras packages were used to build a feed-forward DNN with 3 hidden layers 
of 256 nodes each. 
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Support Vector Machine (SVM) 

 

• SVM defines a non-linear decision boundary that optimally separates two classes. 
• The free and open source package LibSVM3.1 was used for SVM implementation. 

Extreme Gradient Boosting (XGB) 

• XGB is used for regression and classification problems. The outputs of an ensemble of weak 
prediction models, typically decision trees, are combined to yield a final prediction. 

• The R package caret was used to implement XGB. 
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Model Performance 

• The pKa dataset was divided into acidic and basic pKa datasets, which were modeled 
separately. 

• Models were assessed using root mean-squared error (RMSE) and the coefficient of 
determination (R2). Test set results are reported below. 

Algorithm Best Acidic 
Model RMSE  

Best Acidic 
Model R2 

Best Basic Model 
RMSE  

Best Basic 
Model R2 

DNN 1.51 0.80 1.57 0.77 

SVM 1.80 0.72 1.53 0.78 

XGB 1.82 0.71 1.90 0.67 
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Benchmark with Commercial Tools 

Concordance Between the Commercial Tools and DataWarrior 

To be able to use the predictions from the commercial tools as a benchmark to our models, we 
first needed to assess the concordance of their predictions with DataWarrior. 

DataWarrior Acidic Dataset (3260 Chemicals) 

  ACD/Labs ChemAxon 

Predicted 
chemicals 

3145 3206 

R2 -0.21 -0.11 

RMSE 3.72 3.52 

DataWarrior Basic Dataset (3680 Chemicals) 

  ACD/Labs ChemAxon 

Predicted 
chemicals 

1618 3649 

R2 -0.05 0.23 

RMSE 3.00 2.79 
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ACD/Labs pKa Predictor 

 

ChemAxon pKa Predictor 

 

External Set Prediction and Model Concordance 

• A set of 8904 QSAR-ready structures (non-overlapping with DataWarrior) from the 
TSCA-actives list (https://comptox.epa.gov/dashboard) was used as benchmark to compare the 
predictions of the models from this work and the commercial tools.  

• For this analysis, the SVM model was implemented in OPERA 
(https://github.com/kmansouri/OPERA) (Mansouri et al. 2018). 
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Comparison of All Models for the Acidic pKa Predictions 

 Predictions ACD/Labs - 
R2 

ACD/Labs 
- RMSE 

ChemAxon - 
R2 

ChemAxon - 
RMSE 

SVM - 
R2 

SVM - 
RMSE 

DNN - 
R2 

DNN - 
RMSE 

XGB - 
R2 

XGB - 
RMSE 

ACD/Labs 1 0 0.47 4.48 0.60 3.46 0.34 4.95 0.23 5.36 

ChemAxon 0.60 4.48 1 0 0.52 4.55 0.45 5.41 0.30 6.09 

SVM  * * * * 1 0 0.51 2.09 0.44 2.27 

DNN  * * * * 0.74 2.09 1 0 0.51 2.39 

XGB  * * * * 0.43 2.27 0.15 2.39 1 0 
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Comparison of All Models for Basic pKa Predictions 

 Predictions ACD/Labs - 
R2 

ACD/Labs - 
RMSE 

ChemAxon - 
R2 

ChemAxon - 
RMSE 

SVM - 
R2 

SVM - 
RMSE 

DNN - 
R2 

DNN - 
RMSE 

XGB - 
R2 

XGB - 
RMSE 

ACD/Labs 1 0 0.48 2.88 -0.14 4.57 -0.62 5.67 -0.80 5.99 

ChemAxon 0.61 2.88 1 0 0.02 5.66 -2.62 9.77 -2.36 9.42 

SVM  * * * * 1 0 -0.90 3.41 0.37 1.97 

DNN  * * * * 0.15 3.41 1 0 0.35 2.99 

XGB  * * * * 0.28 1.97 -0.49 2.99 1 0 

* Our models are not used as reference to evaluate ChemAxon and ACD/Labs predictions. 
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Range of Predictions and Limitations 

DataWarrior Acidic and Basic Datasets 

 

• pKa predictions generated by our models range between about -5 and 15 for both the acidic 
and basic datasets.  

• The narrow prediction range of our models (compared to the two commercial tools) is 
certainly linked to DataWarrior data that has the same range as shown by the distribution of 
its acidic and basic pKa values (histograms above). 

• The different ranges in pKa predictions may also explain why: 
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- The disagreement between our models and the commercial models on the benchmark 
dataset (TSCA-actives) is higher for the basic pKa predictions. This is particularly 
noticeable with ChemAxon, which generated a high number of predictions of pKas lower 
than -5 for the basic data set.  

- For the TSCA-actives list, the divergence between ACD/Labs and ChemAxon is higher 
for the basic pKa predictions compared to the acidic pKa predictions. Interestingly, this is 
the opposite of what occurred for the DataWarrior dataset.  

• The predictions of our models can be considered more accurate in the range of -5 to 15 for 
both the acidic and basic pKas. 

Summary and Next Steps 

• An automated QSAR data preparation workflow was applied to a public data set of 7912 
chemicals, creating three data subsets, Acidic, Basic and Combined. Model performance was 
evaluated using all data subsets with the DNN, SVM, and XGB algorithms. 

• The best models were compared and benchmarked with two commercial predictors showing 
different levels of concordance.  

• The models and source codes will be available for download and use. 
• This modeling effort will help provide predicted pKa values for all ionizable chemicals in the 

EPA DSSTox database. 

- Predictions will be available on the EPA’s CompTox Chemistry Dashboard 
(https://comptox.epa.gov)  

- Predictions will also be used by the NICEATM’s Integrated Chemical Environment 
(ICE) Dashboard (https://ice.ntp.niehs.nih.gov/) in various pharmacokinetic calculations. 
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